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Large-scale natural sources are very imbalance, usually following a long-tailed distribution.

THE LONG TAIL OF DISEASE
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https://worldmapper.org/maps/urban-population-relative-2014/
https://seopressor.com/blog/short-tail-or-long-tail-keywords/

How Imbalance Data Matters in Machine Learning

A direct decomposition on the risk minimization

K

mfin R(f) = Ep(xy) [£(f(x),¥)] = z P(y = k)EP(x|y=k)[€(f(x):Y)]

oo

Number of training samples

Minority (“generalized” conceptual) classes have weak importance for training, which can

be easily ignored in the early phase especially for overparameterized DNNs [1]

Num. of examples

However, in real applications, the value of classes cannot be absolutely characterized by
their quantity, and instead, sometimes less is more for sustainable long-term development.

B Fairness w.r.t. diversity e.g., small populations of gender, race and consumers
B Cost-sensitive scenarios e.g., medical disease diagnosis and treatment

[1] Vitaly Feldman. "Does Learning Require Memorization? A Short Tale about a Long Tail." SIGACT ZOZO.m%JT m
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Why the Resulted Imbalanced Learning is Special

A critical highlight on the evaluation, different from the ordinary IID learning
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The change in evaluation metric induces an statistical consistency problem on applying conventional learning methods, that is,

What we design during training should be statistically consistent with what we pursue about the evaluation.
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The development of imbalance learning

A WA

Learning from Imbalanced Data
Halbo Ho. Merbor, IEEE, and Edwardo A Garia

Alberto Ferndndez - Salvador Garcia
Mikel Galar - Ronaldo C. Prati
Bartosz Krawczyk - Francisco Herrera

Learning

from

Imbalanced
Data Sets

[1] Karakoulas et al. Optimizing Classifers for Imbalanced Training Sets. NIPS 1998.
[2] He et al. Learning from Imbalanced Data. TKDE 2009.

[3] Fernandez et al. Learning from Imbalanced Data Sets. Springer, 2018.

[4] Zhang et al. Deep Long-tailed Learning: A Survey. TPAMI 2023

Deep Long-Tailed Learning: A Survey
fan Zhang, Bingyi Kang, Bryan oo, Shicheng Yon £, and dashiFong
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SMOTE: Synthetic Minority Over-sampling Technique

Motivation: Replication of the minority class does not cause its decision boundary to spread into the majority class region (but overfitting).

Interpolation on minority manifold Under-sampling in the majority class

The main idea of SMOTE: augmentation Interpolation is limited by the samples.
for minority class by interpolation instead Thus, SMOTE also always runs with the
of over-sampling with replacement. under-sampling for majority class.

Incr minority diversity an

Chawla, Nitesh V., et al. "SMOTE: Synthetic Minority Over-Sampling Technique." JAIR 2002.
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Threshold-Moving: adjust the prediction in a post-hoc manner.

Motivation: The over-confident prediction for majority or the low-confident prediction for minority can be calibrated after training.

THE THRESHOLD-MOVING ALGORITHM

Training phase:

1.
2.

Let S be the original training set.
Train a neural network from S.

Test phase:

1.
2.

3.

Generate real-value outputs with the trained neural network.

For every output, multiply it with the sum of the costs of
misclassifying the corresponding class to other classes.

Return the class with the biggest output.

Moving function

Zhou, Z. H., & Liu, X. Y. Training Cost-Sensitive Neural Networks with Methods Addressing the Class Imbalance Prop}é“ﬁﬁ%% T
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where p; is the probabilistic prediction,
C[k][k'] is the cost mis-predicted from class
k to k', and n is renormalization parameter.

Sampling methods might not always show promise in multi-class
Imbalance learning, but threshold-moving way does.
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Letp, = denote the class prediction. If we set YX,_. C[k][k'] = e~ "1°8 "k

ZK Zky
where m,, is the class prior and T is the temperature, the threshold-moving method
recovers the popular logit adjustment method for long-tailed learning.

Majority classes have the smaller cost than minority classes, e.g.,e~ T8 ”k_LS_mQDDIQDQUSJ;LdB_QLQa&ng
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COG: Local Decomposition for Rare Class Analysis

Intuition: Quantity imbalance limits the learning pace of minority over majority. We can adjust the quantities by decompositi on.

How to properly decompose the majority classes (or including minority classes) into subclasses to balance the training?

. 5 ." o 0O g g O : Boo Bog o
Do g oy, B o @O o o " o . o DDDD:DD Opofd
O o IID - = o “ ] u] o |:|I:I O o g :. a o g |:|I:I DDD
. o\ “L o N gto 0 oo F % DDD o,.-""
o . - Onno
o (s ] ] o o0 pg " o a
o VB = o0 ++ || Tamesd g
o u] o o - 'o' + u] o - o gOo
= ] m] + P o + o a o
o \ O + + O oo
“\ o - +++ . N o o™ I:I|:| i+ ‘aa =
' L* o " o
? o o g 0o o H ," . = DDD D Dn . ++ = I g
\ o o, o o o, O . |:|E'," o
. = DD o ‘.l : o 8 o [ O - ’ ’ ?"D DD - :j a 3 "-E' |:|' #
o N : . ;o o - ? o o o E DDD % "n :
separate rare class
Phase I: local clustering Phase II: over-sampling (for COG-0OS only) |Phase III: training
1. for classi=1toc // “” represents #classes | - for class j =1 to ¢ 9. M = train(D**, L);
2. clusterLabel(i) = Clustering(D(7), K(i)); 6 D(j)* = replicate(D(j)*, r(j))| Phase IV: predicting
3. D(i)* = changeLabel(D(i), clusterLabel(i)); | 7- eni for . ' 10. p' = predict(7, M);
4. end for 8 D = ;= (D)™); 11. p = convertLabel(p’);

Wu. J. J. et al. COG: Local Decomposition for Rare Class Analysis. DMKD, 2010.
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Retrospection-1V: Theory for Imbalance Learning P

On Statistical Consistency of Binary Classification with Balanced Accuracy

Motivation: The early ERM theory is developed for the instance-wise evaluation, but cannot guarantee the consistency for balanced measure.

Yke{-1,1} Ep(xly=iR(x)=K]
2

Accuracy = E,,,y[h(x) =y] mmmm)  Balanced Accuracy =

If we consider the balanced accuracy, how to modify the algorithm to satisfy the statistical consistency?

Algorithm 1 Plug-in with Empirical Threshold
Theorem 3. Let D be a probability distribution on 1. Input: S = ((21,91), .-, @nyYn)) € (X x {EL})"

X x{£1} satisfying Assumption A. Let ps denote any 2: Select: (a) Proper (composite) loss £ : {1} x
estimator of p = P(y = 1) satisfying ps € (0,1) and R—R,, with link function % : [0, 1] =R; (b) RKHS

(c) regularization parameter A\, > 0

[s € argminfej:K {% Z?=1 Cys, fz:)) + An”f”%{}
s =y~ "o fs

ps = (as in Eq. (2))

Output: Classifier hg(x) = sign(fs(z) — ps)

estimator satisfying Bz [|Ng(z) — n(z)|" Lo for some

=

r > 1, and let hg(x) = sign(fs(z) — pg).| Then

regret3M[hg] 0.

Menon, Aditya, et al. "On the Statistical Consistency of Algorithms for Binary Classification under Class Imbalance.” W JT m
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summary

Summary of imbalanced learning in the early years

Imbalanced
Learning

Statistical
Consistency

| l

Adjust penalty preference from The statistically-consistent loss family
the loss perspective. for imbalanced binary classification

A 4

Control sample quantity from Control learning complexity from
the input augmentation perspective the label manipulation perspective

oSS
Adjustment

J J

Re-Sampling Re-Labeling

J
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What is the new of this topic in the recent years?
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The Following Part in This Tutorial

The recent advances of imbalance learning powered by deep learning

_ supervised
Imbalance long-tailed
learning
I I
binary multi-label :
Imbalance Imbalance long tail self-
supervised
long-tailed

learning

Ara=srullL



les

ining samp

Number of tra

It has been contributed with
very broad explorations

A

Decision
boundary

Class Re-bal:

Module Improvement

Sorted class index

Method Year Target Aspect
Re-sampling CSL LA TL Aug RL CD DT Ensemble
LMLE [89] 2016 v feature
HFL [90] 2016 v feature
Focal loss [54] 2017 v objective
Range loss [21] 2017 v feature
CRL [50] 2017 v feature
MetaModelNet [01] 2017 v
DSTL [92] 2018 v
DCL [93] 2019 v sample
Meta-Weight-Net [94] 2019 v objective
LDAM [18] 2019 v objective
CB[16] 2019 v objective
UML [95] 2019 v feature
FTL [96] 2019 v v feature
Unequal-training [48] 2019 v feature
OLTR [15] 2019 v feature
Balanced Meta-Softmax [97] 2020 v v sample, objective
Decoupling [32] 2020 v v v v feature, classifier
LST [98] 2020 v v sample
Domain adaptation [28] 2020 v objective
Equalization loss (ESQL) [19] 2020 v objective
DBM [22] 2020 v objective
Distribution-balanced loss [37] 2020 v objective
UNO-IC [99] 2020 v prediction
De-confound-TDE [45] 2020 4 v prediction
M2m [100] 2020 v v sample
LEAP [49] 2020 v v feature
OFA[101] 2020 v v v feature
SSP[102] 2020 v feature
LFME [103] 2020 v v sample, model
1IEM [104] 2020 feature
Deep-RTC [105] 2020 v classifier
SimCal [34] 2020 v v sample, model
BBN [44] 2020 v sample, model
BAGS [56] 2020 v sample, model
VideoLT [38] 2021 4 sample
LOCE [33] 2021 v v sample, objective
DARS [26] 2021 v v v sample, objective
CReST [106] 2021 4 v sample
GIST [107] 2021 v v v classifier
FASA [58] 2021 v v feature
Equalization loss v2 [108] 2021 v objective
Seesaw loss [109] 2021 v objective
ACSL[110] 2021 v objective
IB[111] 2021 v objective
PML [51] 2021 v objective
VS[112] 2021 v objective
LADE [31] 2021 v v objective, prediction
RoBal [113] 2021 v v v objective, prediction
DisAlign [29] 2021 v v v objective, classifier
MiSLAS [114] 2021 v v v objective, feature, classifier
Logit adjustment [ 14] 2021 v prediction
Conceptual 12M [115] 2021 v
DiVE [l 16] 2021 v
MosaicOS [117] 2021 v
RSG[118] 2021 v v feature
SSD [119] 2021 v v
RIDE [17] 2021 v 4 model
MetaSAug [120] 2021 v sample
PaCo [121] 2021 v feature
DRO-LT [122] 2021 v feature
Unsupervised discovery [35] 2021 v feature
Hybrid [123] 2021 v feature
KCL [13] 2021 v v feature
DT2[61] 2021 v feature, classifier
LTML [46] 2021 v sample, model
ACE [124] 2021 v sample, model
ResLT [125] 2021 v sample, model
SADE [30] 2021 v

[1] Zhang et al. "Deep Long-Tailed Learning: A Survey" TPAMI 2023.

objective, model
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Supervised Long-tailed Learning

loss re-weighting by effective number

» Intuition: Non-overlapping sample number, instead of the vanilla quantity number, playing the role of imbalance

» Effective Number: The effective number of examples
IS the expected volume of samples.

N, E,=(1-58")/(1-p8)
'.f \\\ Overlapped (p) ',.’ \‘
l | '. : where 3 = (N —1)/N
\ / N ! 1 .
N f’ Ofolf@q KN . /f 11111 E’ﬁ, =N
\\u‘--_”z/ G‘DD@ \x\h-_"z, ﬁ—}]_
a(fw) S
™3 Al possible data (N) » Class-Balanced Loss: Training from imbalanced data
-~ ! L by introducing a weighting factor that is inversely
Previously sampled data \ : proportional to the effective number of samples.
@ Newly sampled data (1) \\ it

The class-balanced loss term can be applied to a wide
range of deep networks and loss functions.

Are=srullL

[1] Cui et al. "Class-Balanced Loss Based on Effective Number of Samples" CVPR 2019.



» Class-Balanced Loss: The class-balanced (CB) loss can be written as:

Top-1 Error (%)
& &

30

CB(p. ) = 5 L£(P.3) = 1~ L(p.1)

1-p

My

CBsof[max(Z-,~ y) =——lo

exp(zy)

2.

C

j=1€XP

(25)

It can also be combined with sigmoid cross-entropy loss, focal loss, etc.

ILSVRC 2012 iNaturalist 2018 Dataset Name Long-Tailed CIFAR-10 Long-Tailed CIFAR-100
<Net50 CB Fora Imbalance 200 100 50 20 10 | 200 100 50 20 10 1
Softmax 34.32 29.64 25.19 17.77 13.61 6.61 | 65.16 | 61.68 | 56.15 | 48.86 | 44.29 29.07
Sigmoid 3451 29.55 23.84 16.40 12.97 6.36 | 6439 | 61.22 | 55.85 | 48.57 | 44.73 28.39
2 Focal (v = 0.5) 36.00 29.77 23.28 17.11 13.19 6.75 | 65.00 | 61.31 | 55.88 | 48.90 | 44.30 28.55
8 Focal (v = 1.0) 34.71 29.62 23.29 17.24 13.34 6.60 | 6438 | 61.59 | 55.68 | 48.05 | 44.22 28.85
E Focal (v = 2.0) 35.12 30.41 2348 16.77 13.68 6.61 | 6525 | 61.61 | 56.30 | 48.98 | 45.00 28.52
° Class-Balanced 31.11 25.43 20.73 15.64 12.51 | 6.36" | 63.77 | 60.40 | 54.68 | 47.41 | 42.01 | 28.39"
Loss Type SM Focal Focal SM SGM | SGM | Focal | Focal | SGM | Focal | Focal SGM
B 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 - 0.9 0.9 0.99 0.99 | 0.999 -
30 40 50 60 70 80 0 0 10 20 30 40 ) 70 80 90 i - 1.0 20 - - 1.0 LO - 0.5 0.5

Epochs Epochs

The proposed framework provides a non-parametric means of quantifying data overlap.

[1] Cui et al. "Class-Balanced Loss Based on Effective Number of Samples” CVPR 20109.

A=l
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Class-wise margin calibration

» Motivation: for imbalanced learning, there is a class-distribution-aware margin trade-off for generalization error.

The generalization error is proportional to the following (two classes, and same holds for multiple classes)

Y1 +tYV2=Y

The margin definition:

. C
v = gg}“r(:rnya) Vi = F
YA RN==a Y m o

[1] Cao et al. "Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss" NeurlPS 20109. 16



» LDAM: The authors define their hinge loss function (and its relaxed version via Softmax)

Lipamnc((z,y); f) = maﬁ(l}lﬁf;‘i{%} —zy +A,,0)

where A = /3 forj e {1,...,k}
J
Dataset Imbalanced CIFAR-10 Imbalanced CIFAR-100
Imbalance Type long-tailed step long-tailed step
Imbalance Ratio | 100 | 10 | 100 | 10 100 | 10 | 100 | 10
ERM 29.64 1361 | 36.70 17.50 | 61.68 4430 | 6145 4537
Focal [Lin et al, 2017] 29.62 1334 | 36.09 1636 | 61.59 4422 | 6143 46.54
LDAM 26.65 13.04 | 3342 1500 | 6040 43.09 | 6042 43.73
CBRS 2945 1321 | 38.14 1541 | 66.56 4494 | 66.23 46.92
CBRW [Curetal,2019] | 27.63 1346 | 38.06 16.20 | 66.01 4288 | 78.69 47.52
CB Focal [Cuictal, 2019] | 25.43 1290 | 39.73 1654 | 63.98 4201 | 80.24 4998
HG-DRS 27.16 14.03 | 2993 14.85 - -
LDAM-HG-DRS 2442 1272 | 2453 1282 - - - -
M-DRW 2494 1357 | 27.67 13.17 | 5949 4378 | 5891 44.72
LDAM-DRW 2297 11.84 | 23.08 12.19 | 57.96 41.29 | 54.64 40.54

Lipam((z,y); f) = —log

(e) ERM val

COENOONHAWN =0

CENONBWN =4O

where A =

-1
0
1 -1 0

(b) Re-sampling train

(f) Re-sampling val

COENODNAWN=O

CENODNBWN=O

C .
mfﬁl‘jé{l,

(g) Re-weighting val

CENODOAWN O
=]

CENDONBEWN =4O
[=]

K}

(h) LDAM val

The margin definition is an approximation to the truth value, and whether we should directly add on the logit space?

[1] Cao et al. "Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss" NeurlPS 20109.

COENOOHWN O
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17

CENDON B WN =4O

L



Supervised Long-tailed Learning

Class-wise logit adjustment [1]
» Motivation: Design a consistent loss function that allows for a relatively elastic margin in the logit for head and tail.

» Balanced error: Under class imbalance, to measure balanced error:

BER(S) = 7 30 Py (y # axgmax, cy iy (0))

Under Bayes-optimal prediction, if Pbal(y | 2) < P(y | z)/P(y)
Then

argmax, ey PPal(y | z) = argmax, (7] exp(s,(z))/P(y) = argmax, () s, (z) — InP(y)

Ara=srullL

[1] Menon et al. ”Long-tailed Learning via Logit Adjustment” ICLR 2021. 18




Supervised Long-tailed Learning

» The logit adjusted softmax cross-entropy

efy(m)'i""'logﬂ'y Tzt T
= log [1 -+ (_y) . e(fy/(m)—fy(-’ﬂ)):|
Zy’e[L] 6fy/(:zz)+7'-log Ty Zy/;éy Tty

g(y,f(l’)) . —lOg

wy ®(z)/m1 < wy D(x)/m2 22 exp(wy (x))/m1 < exp(w, D(x))/m2.

» Post-hoc logit adjustment

argmax, ¢y exp(w;_fﬁ(z))/?r; = argmax, ) fy(x) — 7 - log m,

Ara=srullL

[1] Menon et al. ”Long-tailed Learning via Logit Adjustment” ICLR 2021. 19




Supervised Long-tailed Learning

» An remarkable point on the statistical consistency of long-tailed multi-class classification

g(ya f(.fU)) = Oy - lOg |:]. —+ eA’yy’ . e(fy’ (m)_fy($))]
y'#y

T

Theorem 1. For any § € RL, the pairwise loss in (11) is Fisher consistent with weights and margins
ay = 0y /P(y) Ayy = log (6, /d,).

Letting ,, = m,, we immediately deduce that the logit-adjusted loss of (10) is consistent, provided
our 7, is a consistent estimate of P(y). Similarly, d,, = 1 recovers the classic result that the balanced
loss is consistent. While Theorem | only provides a sufficient condition in multi-class setting, one
can provide a necessary and sufficient condition that rules out other choices of A in the binary case.

Ara=srullL

[1] Menon et al. ”Long-tailed Learning via Logit Adjustment” ICLR 2021. 20




Supervised Long-tailed Learning

Dynamic adjustment based on a fine-grained generalization bound

Proposition 3 (Data-Dependent Bound for the VS Loss). Given the function set F and the VS
loss Lys, for any § € (0,1), with probability at least 1 — & over the training set S, the following
generalization bound holds for all f € F:

- C

Cs(F) 5

Cro Z ay By /Ty [1 — softmax (By By (f) + Ay)].

y=1

eﬁyf(a’)y‘FAy
LVS(f(:B)a y) = — Wy log .

Do ePu f(@)y +Ay
RbLai(f) 2 ®(Lys, 0) + Y

Algorithm 1: Principled Learning Algorithm induced by the Theoretical Insights

Require: Training set S = {(z;, y;)}, and a model f parameterized by ©.
1: Initialize the model parameters © randomly.
2. fort=1,2,--- ,Tdo

3: B« SampleMiniBatch(S, m) > A mini-batch of m samples

4. if t < T, then

5: Seta =1,3,,A, > Adjust logits during the initial phase

6. else

7: Setay ocx ", By =1,A,4,v >0 > TLA and ADRW

g end if

9 L(f,B)«+ L Y @ayes Lvs(f(@),y) > Calculate the loss
10: O« 0 —nVeL(f,B) > One SGD step
11:  Optional: anneal the learning rate 7). > Required when t = Tj
12: end for

A=l

[1] Wang et al. "A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment for Imbalanced Learning" NeurlPS 2023.,,




Is self-supervised learning more robust to data imbalance?

Ly class 1 learned features
¢ class 2 X% €3.4 .
| 3 T S . x X '61
O class I A x e
X B ® x %ﬁ"; /
" . ® % » % x: x,‘ x SL: /\
* o
o VU (overfitting to
> €1 the rare class)
- - o o o o e, o
- ﬁ;gﬂ N nell:l 3: 2 / ez
=] on .
. nﬂ o o o o - f a] . SSL- el
» Supervised learning (SL) only extracts features that » Self-supervised learning (SSL) learns task-irrelevant
are useful for predicting labels (e,) features regardless of the labels, which enables

richer and more robust representation (e, e,)

Ara=srullL

[1] Liu et al. "Self-supervised Learning is More Robust to Dataset Imbalance.” ICLR 2021.



Self-Supervised Long-tailed Learning

Self-supervised learning still suffers from data imbalance

» Performance degeneration: Linear probing on imbalanced data (D;) and balanced data (D) with same data amount

Dataset Subset Many Medium Few All

CIFAR10 Dy, 77.14 + 4.64 74.25 + 6.54 71.47 +7.55 74.57 £ 0.65
D; 76.07 £+ 3.88 67.97 £ 5.84 5421 £10.24 67.08 £ 2.15

CIFAR 100 Dy 2548 + 1.74 25.16 +3.07 24.01 +1.23 24.89 + 0.99
D; 30.72 £ 2.01 21.93 +2.61 15.99 + 1.51 22.96 + 0.43

> Representation learning disparity: head classes dominate the feature regime but tail classes passively collapse

SimCLR

100

Head 1
B Head2
25 Head 3
Head 4
B Tail1
Tail 2

Dimension 2

B Tail3
B Tail4

-100

&

-100-75 -50 -25 0 25 50 75 100

[1] Jiang et al. ""Self-damaging contrastive learning.” ICML 2021.

Dimension 1

A=l

[2] Zhou et al. "Combating Representation Learning Disparity with Geometric Harmonization." NeurlPS 2023.
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SDCLR: Self-damaging Contrastive Learning

» Intuition: The sensitivity of head and tail samples to the model pruning, are very
different, which helps us to anchor and promote the training of tail samples.

Non-PIE PIE
» Pruning identified exemplars (PIE) systematically investigates the model _—
output changes introduced by pruning and finds that certain examples are

particularly sensitive to sparsity. They are high likely to be rare and atypical

samples, which probably comes from tail classes.

Non-PIE PIE

Target model

—> W —> Re Long-tail samples
e :
' A N, (poorly memorized)

Aouajsisuoo
90J0jug
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[1] Jiang et al. "Self-damaging contrastive learning." ICML 2021.
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BCL: Boosted Contrastive Learning

» Motivation I: Memorization effect still holds under long-tailed distribution. » Challenge: how to detect tail data
and how to construct the desired
information discrepancy

F1 R 70 s

Low M; High M,

» Motivation Il: Stronger information discrepancy motivates tail samples mining

3.9 58 54 [ RandAug(k=1)
I RandAug(k=2)

Accuracy
Accuracy
w
o

-- Loss-H + Acc H
3.1 ---- Loss-T == Acc-T |42 46

200 400 600 800 1000
Epoch Augmentation Strength

» Motivated from the observation that learning speed-based proxy shows strong correlation with the

memorization score[1], BCL extends the memorization estimation to self-supervised learning.
m m 1 LG;f T E?’
Ei,O — ‘C’i,ov 7 t — /Bﬁz t—1 + (1 T /B)Ei,t Mi,t = 5 'r’n = +1
max { ‘Ei,t — L ! Fico N Adaptively assigns the appropriate
U(x;; A M;) =ai(x;)o...oa(x;), N T fw(at augmentation strength for the
1 X exp (f(‘l’( 1)) Tf(\l’( L ))) individual sample according to the
Ai(z;; M) u~U0,1)&u<M; LpcL=— — log - feedback from the memorization clues
J N FQU ()T (¥ (]))
aj(aji) - . i=1 Z 1oyt €XP ( ! L )
xT; otherwise rieX T

[1] Jiang et al. “Characterizing structural regularities of labeled data in overparameterized models.” ICME 2020+ ST |1

[2] Zhou et al. “Contrastive learning with boosted memorization. " ICML 2022. 25
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Memorization-boosted Augmentation

Select Type Loop: k

{1 .
: H
-

Select Strength Intensity
E——

| —
L

4 9

Memorization ED:ED]

Clue Historical Loss

_________________________________

» Calculate memorization scores 17 0T MLH e O
based on historical statistics to .
detect tail.
. i ©-1.3
» Construct instance-wise
augmentations to enhance are . e
representation learning. 0o e T e
0 100 200 300 400E500h600 700 800 900 1000
poc

Ara=srullL

[1] Zhou et al. “Contrastive learning with boosted memorization. " ICML 2022, 26
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GH: Geometric Harmonization

» Why the conventional contrastive learning underperforms in self-supervised long-tailed context?

Conventional contrastive loss motivates sample-level uniformity, which is biased towards the head classes.

()

(a) R=1(Balanced) (b) R=4 (c) R=16

(d) R=64
Contrastive learning causes severer representation learning disparity when enlarging the imbalance ratios.
Geometric Uniform Structure Surrogate Label Alllocation
M -M; =C, Vi, j €{1,2,.... K}, i #j, min - Lon = -5 Y dilogas,
A t t . M h [qla :qN] ‘ ‘ x;~D
ny two vectors in ave T
t. Iy =N - g =1
the same angle, namely, the 5. Q-1y =N-m QT -1k =Ly,
unit space are equally Overall objective
partitioned by the vectors. min £ = LinfoNcE + WeHLGH,

0,Q

mt%mf

[1] Zhou et al. "Combating Representation Learning Disparity with Geometric Harmonization." NeurlPS 2023.



summary

Still require more efforts on this way
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Thank you

Q&A
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